Introducción a la ciencia de datos
Contenido sugerido
- Métodos de clasificación
 - Matrices dispersas
 - Métodos de búsqueda de estructura
 - Agrupamiento de datos
 - Técnicas de aprendizaje máquina para el análisis de datos
 
Sugerencias de Bibliografia
- Bandeira, A. S. (2016) Ten Lectures and Forty-Two Open Problems in the Mathematics of Data Science. http://www.cims.nyu.edu/bandeira/TenLecturesFortyTwoProblems.pdf
 - Bishop, C.M. (2006) Pattern Recognition and Machine Learning. Springer.
 - Buhlmann, P., Drineas, P., Kane, M. and van der Laan, M. (2016) Handbook of Big Data. CRC/Chapman and Hall.
 - Buhlmann, P. and van de Geer, S. (2016) Statistics for High-Dimensional Data. Springer.
 - Fukunaga, K. (1990) Introduction to Statistical Pattern Recognition. Academic Press.
 - Giraud, C. (2015) Introduction to High-Dimensional Statistics. CRC/Chapman and Hall.
 - Hastie, T., Tibshirani, R. and Friedman, J.H. (2008). The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer.
 - Hjsgaard, S., Edwards, D. and Lauritzen, S. (2012). Graphical Models with R. Springer.
 - Izenman, A.J. (2008) Modern Multivariate Statistical Techniques. Springer.
 - Mahoney, M. (2016) Lecture Notes on Randomized Linear Algebra. https://arxiv.org/abs/1608.04481
 - National Research Council (2013) Frontiers in Massive Data Analysis. The National Academies Press.
 - Nolan, D. and Temple Lang, D. (2015) Data Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving. CRC/Chapman and Hall.
 - Pourahmadi, M. (2013) High-Dimensional Covariance Estimation. Wiley.
 

